3.2.52 \(\int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx\) [152]

3.2.52.1 Optimal result
3.2.52.2 Mathematica [A] (warning: unable to verify)
3.2.52.3 Rubi [A] (verified)
3.2.52.4 Maple [B] (warning: unable to verify)
3.2.52.5 Fricas [A] (verification not implemented)
3.2.52.6 Sympy [F]
3.2.52.7 Maxima [F]
3.2.52.8 Giac [F]
3.2.52.9 Mupad [F(-1)]

3.2.52.1 Optimal result

Integrand size = 27, antiderivative size = 219 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\frac {2 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right ) \tan (e+f x)}{c^2 f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {a^{3/2} \sqrt {d} (3 c+2 d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right ) \tan (e+f x)}{c^2 (c+d)^{3/2} f \sqrt {a-a \sec (e+f x)} \sqrt {a+a \sec (e+f x)}}-\frac {a d \tan (e+f x)}{c (c+d) f \sqrt {a+a \sec (e+f x)} (c+d \sec (e+f x))} \]

output
-a*d*tan(f*x+e)/c/(c+d)/f/(c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2)+2*a^(3/2 
)*arctanh((a-a*sec(f*x+e))^(1/2)/a^(1/2))*tan(f*x+e)/c^2/f/(a-a*sec(f*x+e) 
)^(1/2)/(a+a*sec(f*x+e))^(1/2)-a^(3/2)*(3*c+2*d)*arctanh(d^(1/2)*(a-a*sec( 
f*x+e))^(1/2)/a^(1/2)/(c+d)^(1/2))*d^(1/2)*tan(f*x+e)/c^2/(c+d)^(3/2)/f/(a 
-a*sec(f*x+e))^(1/2)/(a+a*sec(f*x+e))^(1/2)
 
3.2.52.2 Mathematica [A] (warning: unable to verify)

Time = 5.18 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.11 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\frac {(d+c \cos (e+f x))^2 \sec ^{\frac {3}{2}}(e+f x) \sqrt {a (1+\sec (e+f x))} \left (\frac {2 \left (2 (c+d)^{3/2} \arctan \left (\frac {\tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )-\sqrt {d} (3 c+2 d) \arctan \left (\frac {\sqrt {d} \tan \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\frac {\cos (e+f x)}{1+\cos (e+f x)}}}\right )\right ) \sqrt {\frac {\cos (e+f x)}{(1+\cos (e+f x))^2}} \sqrt {1+\sec (e+f x)}}{(c+d)^{3/2}}-\frac {2 c d \tan \left (\frac {1}{2} (e+f x)\right )}{(c+d) (d+c \cos (e+f x)) \sqrt {\sec (e+f x)}}\right )}{2 c^2 f (c+d \sec (e+f x))^2} \]

input
Integrate[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x])^2,x]
 
output
((d + c*Cos[e + f*x])^2*Sec[e + f*x]^(3/2)*Sqrt[a*(1 + Sec[e + f*x])]*((2* 
(2*(c + d)^(3/2)*ArcTan[Tan[(e + f*x)/2]/Sqrt[Cos[e + f*x]/(1 + Cos[e + f* 
x])]] - Sqrt[d]*(3*c + 2*d)*ArcTan[(Sqrt[d]*Tan[(e + f*x)/2])/(Sqrt[c + d] 
*Sqrt[Cos[e + f*x]/(1 + Cos[e + f*x])])])*Sqrt[Cos[e + f*x]/(1 + Cos[e + f 
*x])^2]*Sqrt[1 + Sec[e + f*x]])/(c + d)^(3/2) - (2*c*d*Tan[(e + f*x)/2])/( 
(c + d)*(d + c*Cos[e + f*x])*Sqrt[Sec[e + f*x]])))/(2*c^2*f*(c + d*Sec[e + 
 f*x])^2)
 
3.2.52.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.89, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {3042, 4428, 114, 27, 174, 73, 219, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (e+f x)+a}}{(c+d \sec (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a}}{\left (c+d \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4428

\(\displaystyle -\frac {a^2 \tan (e+f x) \int \frac {\cos (e+f x)}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))^2}d\sec (e+f x)}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 114

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\int \frac {a \cos (e+f x) (2 (c+d)-d \sec (e+f x))}{2 \sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{a c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\int \frac {\cos (e+f x) (2 (c+d)-d \sec (e+f x))}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{2 c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\frac {2 (c+d) \int \frac {\cos (e+f x)}{\sqrt {a-a \sec (e+f x)}}d\sec (e+f x)}{c}-\frac {d (3 c+2 d) \int \frac {1}{\sqrt {a-a \sec (e+f x)} (c+d \sec (e+f x))}d\sec (e+f x)}{c}}{2 c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\frac {2 d (3 c+2 d) \int \frac {1}{c+d-\frac {d (a-a \sec (e+f x))}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}-\frac {4 (c+d) \int \frac {1}{1-\frac {a-a \sec (e+f x)}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}}{2 c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\frac {2 d (3 c+2 d) \int \frac {1}{c+d-\frac {d (a-a \sec (e+f x))}{a}}d\sqrt {a-a \sec (e+f x)}}{a c}-\frac {4 (c+d) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} c}}{2 c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {a^2 \tan (e+f x) \left (\frac {\frac {2 \sqrt {d} (3 c+2 d) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a-a \sec (e+f x)}}{\sqrt {a} \sqrt {c+d}}\right )}{\sqrt {a} c \sqrt {c+d}}-\frac {4 (c+d) \text {arctanh}\left (\frac {\sqrt {a-a \sec (e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} c}}{2 c (c+d)}+\frac {d \sqrt {a-a \sec (e+f x)}}{a c (c+d) (c+d \sec (e+f x))}\right )}{f \sqrt {a-a \sec (e+f x)} \sqrt {a \sec (e+f x)+a}}\)

input
Int[Sqrt[a + a*Sec[e + f*x]]/(c + d*Sec[e + f*x])^2,x]
 
output
-((a^2*(((-4*(c + d)*ArcTanh[Sqrt[a - a*Sec[e + f*x]]/Sqrt[a]])/(Sqrt[a]*c 
) + (2*Sqrt[d]*(3*c + 2*d)*ArcTanh[(Sqrt[d]*Sqrt[a - a*Sec[e + f*x]])/(Sqr 
t[a]*Sqrt[c + d])])/(Sqrt[a]*c*Sqrt[c + d]))/(2*c*(c + d)) + (d*Sqrt[a - a 
*Sec[e + f*x]])/(a*c*(c + d)*(c + d*Sec[e + f*x])))*Tan[e + f*x])/(f*Sqrt[ 
a - a*Sec[e + f*x]]*Sqrt[a + a*Sec[e + f*x]]))
 

3.2.52.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4428
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e 
 + f*x]]*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(a + b*x)^(m - 1/2)*((c + d 
*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, 
 f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0 
] && IntegerQ[m - 1/2]
 
3.2.52.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(38051\) vs. \(2(189)=378\).

Time = 15.52 (sec) , antiderivative size = 38052, normalized size of antiderivative = 173.75

method result size
default \(\text {Expression too large to display}\) \(38052\)

input
int((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x,method=_RETURNVERBOSE)
 
output
result too large to display
 
3.2.52.5 Fricas [A] (verification not implemented)

Time = 1.57 (sec) , antiderivative size = 1413, normalized size of antiderivative = 6.45 \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\text {Too large to display} \]

input
integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="fricas")
 
output
[-1/2*(2*c*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x 
+ e) - ((3*c^2 + 2*c*d)*cos(f*x + e)^2 + 3*c*d + 2*d^2 + (3*c^2 + 5*c*d + 
2*d^2)*cos(f*x + e))*sqrt(-a*d/(c + d))*log((2*(c + d)*sqrt(-a*d/(c + d))* 
sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 
 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 
 + (c + d)*cos(f*x + e) + d)) - 2*((c^2 + c*d)*cos(f*x + e)^2 + c*d + d^2 
+ (c^2 + 2*c*d + d^2)*cos(f*x + e))*sqrt(-a)*log((2*a*cos(f*x + e)^2 - 2*s 
qrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) 
+ a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/((c^4 + c^3*d)*f*cos(f*x + e)^2 
 + (c^4 + 2*c^3*d + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f), -1/2*( 
2*c*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 
4*((c^2 + c*d)*cos(f*x + e)^2 + c*d + d^2 + (c^2 + 2*c*d + d^2)*cos(f*x + 
e))*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(s 
qrt(a)*sin(f*x + e))) - ((3*c^2 + 2*c*d)*cos(f*x + e)^2 + 3*c*d + 2*d^2 + 
(3*c^2 + 5*c*d + 2*d^2)*cos(f*x + e))*sqrt(-a*d/(c + d))*log((2*(c + d)*sq 
rt(-a*d/(c + d))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin( 
f*x + e) + (a*c + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/ 
(c*cos(f*x + e)^2 + (c + d)*cos(f*x + e) + d)))/((c^4 + c^3*d)*f*cos(f*x + 
 e)^2 + (c^4 + 2*c^3*d + c^2*d^2)*f*cos(f*x + e) + (c^3*d + c^2*d^2)*f), - 
(c*d*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) ...
 
3.2.52.6 Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\int \frac {\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}{\left (c + d \sec {\left (e + f x \right )}\right )^{2}}\, dx \]

input
integrate((a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e))**2,x)
 
output
Integral(sqrt(a*(sec(e + f*x) + 1))/(c + d*sec(e + f*x))**2, x)
 
3.2.52.7 Maxima [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\int { \frac {\sqrt {a \sec \left (f x + e\right ) + a}}{{\left (d \sec \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="maxima")
 
output
integrate(sqrt(a*sec(f*x + e) + a)/(d*sec(f*x + e) + c)^2, x)
 
3.2.52.8 Giac [F]

\[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\int { \frac {\sqrt {a \sec \left (f x + e\right ) + a}}{{\left (d \sec \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^2,x, algorithm="giac")
 
output
sage0*x
 
3.2.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (e+f x)}}{(c+d \sec (e+f x))^2} \, dx=\int \frac {\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}}{{\left (c+\frac {d}{\cos \left (e+f\,x\right )}\right )}^2} \,d x \]

input
int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x))^2,x)
 
output
int((a + a/cos(e + f*x))^(1/2)/(c + d/cos(e + f*x))^2, x)